Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5220, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633970

RESUMO

Assembly of ribosomes in bacteria is highly efficient, taking ~2-3 min, but this makes the abundance of assembly intermediates very low, which is a challenge for mechanistic understanding. Genetic perturbations of the assembly process create bottlenecks where intermediates accumulate, facilitating structural characterization. We use cryo-electron microscopy, with iterative subclassification to identify intermediates in the assembly of the 50S ribosomal subunit from E. coli. The analysis of the ensemble of intermediates that spans the entire biogenesis pathway for the 50 S subunit was facilitated by a dimensionality reduction and cluster picking approach using PCA-UMAP-HDBSCAN. The identity of the cooperative folding units in the RNA with associated proteins is revealed, and the hierarchy of these units reveals a complete assembly map for all RNA and protein components. The assembly generally proceeds co-transcriptionally, with some flexibility in the landscape to ensure efficiency for this central cellular process under a variety of growth conditions.


Assuntos
Escherichia coli , Subunidades Ribossômicas Maiores de Bactérias , Microscopia Crioeletrônica , Escherichia coli/genética , Bactérias , RNA
2.
Nucleic Acids Res ; 51(6): 2862-2876, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36864669

RESUMO

Understanding the assembly principles of biological macromolecular complexes remains a significant challenge, due to the complexity of the systems and the difficulties in developing experimental approaches. As a ribonucleoprotein complex, the ribosome serves as a model system for the profiling of macromolecular complex assembly. In this work, we report an ensemble of large ribosomal subunit intermediate structures that accumulate during synthesis in a near-physiological and co-transcriptional in vitro reconstitution system. Thirteen pre-50S intermediate maps covering the entire assembly process were resolved using cryo-EM single-particle analysis and heterogeneous subclassification. Segmentation of the set of density maps reveals that the 50S ribosome intermediates assemble based on fourteen cooperative assembly blocks, including the smallest assembly core reported to date, which is composed of a 600-nucleotide-long folded rRNA and three ribosomal proteins. The cooperative blocks assemble onto the assembly core following defined dependencies, revealing the parallel pathways at both early and late assembly stages of the 50S subunit.


Assuntos
RNA Ribossômico , Ribossomos , Ribossomos/genética , Ribossomos/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo
3.
Structure ; 30(4): 498-509.e4, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-34990602

RESUMO

Single-particle cryoelectron microscopy (cryo-EM) offers a unique opportunity to characterize macromolecular structural heterogeneity by virtue of its ability to place distinct particle populations into different groups through computational classification. However, there is a dearth of tools for surveying the heterogeneity landscape, quantitatively analyzing heterogeneous particle populations after classification, deciding how many unique classes are represented by the data, and accurately cross-comparing reconstructions. Here, we develop a workflow that contains discovery and analysis modules to quantitatively mine cryo-EM data for sets of structures with maximal diversity. This workflow was applied to a dataset of E. coli 50S ribosome assembly intermediates, which are characterized by significant structural heterogeneity. We identified more detailed branchpoints in the assembly process and characterized the interactions of an assembly factor with immature intermediates. While the tools described here were developed for ribosome assembly, they should be broadly applicable to the analysis of other heterogeneous cryo-EM datasets.


Assuntos
Escherichia coli , Ribossomos , Microscopia Crioeletrônica , Escherichia coli/química , Escherichia coli/genética , Substâncias Macromoleculares/química , Ribossomos/química
4.
J Mol Biol ; 433(8): 166842, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539875

RESUMO

HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.


Assuntos
HIV-1/metabolismo , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Genoma Viral , Células HEK293 , Humanos , Marcação por Isótopo , Vírion/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
5.
J Mol Biol ; 432(4): 978-990, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31877323

RESUMO

RNA helicases play various roles in ribosome biogenesis depending on the ribosome assembly pathway and stress state of the cell. However, it is unclear how most RNA helicases interact with ribosome assembly intermediates or participate in other cell processes to regulate ribosome assembly. SrmB is a DEAD-box helicase that acts early in the ribosome assembly process, although very little is known about its mechanism of action. Here, we use a combined quantitative mass spectrometry/cryo-electron microscopy approach to detail the protein inventory, rRNA modification state, and structures of 40S ribosomal intermediates that form upon SrmB deletion. We show that the binding site of SrmB is unperturbed by SrmB deletion, but the peptidyl transferase center, the uL7/12 stalk, and 30S contact sites all show severe assembly defects. Taking into account existing data on SrmB function and the experiments presented here, we propose several mechanisms by which SrmB could guide assembling particles from kinetic traps to competent subunits during the 50S ribosome assembly process.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Escherichia coli/metabolismo , Sítios de Ligação/genética , Microscopia Crioeletrônica , RNA Helicases DEAD-box/genética , Proteínas de Escherichia coli/genética , Espectrometria de Massas , Mutação/genética , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Subunidades Ribossômicas Maiores de Arqueas/genética , Subunidades Ribossômicas Maiores de Arqueas/metabolismo , Subunidades Ribossômicas Maiores de Arqueas/ultraestrutura , Ribossomos/metabolismo , Ribossomos/ultraestrutura
6.
J Am Soc Mass Spectrom ; 30(1): 94-102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30136215

RESUMO

The kinase-inducible domain (KIX) of the transcriptional coactivator CBP binds multiple transcriptional regulators through two allosterically connected sites. Establishing a method for observing activator-specific KIX conformations would facilitate the discovery of drug-like molecules that capture specific conformations and further elucidate how distinct activator-KIX complexes produce differential transcriptional effects. However, the transient and low to moderate affinity interactions between activators and KIX are difficult to capture using traditional biophysical assays. Here, we describe a collision-induced unfolding-based approach that produces unique fingerprints for peptides bound to each of the two available sites within KIX, as well as a third fingerprint for ternary KIX complexes. Furthermore, we evaluate the analytical utility of unfolding fingerprints for KIX complexes using CIUSuite, and conclude by speculating as to the structural origins of the conformational families created from KIX:peptide complexes following collisional activation. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Proteínas de Membrana/química , Mapeamento de Peptídeos/métodos , Peptídeos/metabolismo , Fosfoproteínas/química , Desdobramento de Proteína , Sítios de Ligação , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Peptídeos/química , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica , Domínios Proteicos
7.
Annu Rev Anal Chem (Palo Alto Calif) ; 10(1): 25-44, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28301749

RESUMO

Capturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry-based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein-small-molecule complexes, and discuss the bright future awaiting this group of technologies.


Assuntos
Ligantes , Espectrometria de Massas/métodos , Preparações Farmacêuticas/análise , Proteínas/análise , Descoberta de Drogas , Íons/química , Espectrometria de Massas/instrumentação , Ligação Proteica
8.
Anal Chem ; 87(22): 11516-22, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26489593

RESUMO

Ion mobility-mass spectrometry (IM-MS) is a technology of growing importance for structural biology, providing complementary 3D structure information for biomolecules within samples that are difficult to analyze using conventional analytical tools through the near-simultaneous acquisition of ion collision cross sections (CCSs) and masses. Despite recent advances in IM-MS instrumentation, the resolution of closely related protein conformations remains challenging. Collision induced unfolding (CIU) has been demonstrated as a useful tool for resolving isocrossectional protein ions, as they often follow distinct unfolding pathways when subjected to collisional heating in the gas phase. CIU has been used for a variety of applications, from differentiating binding modes of activation state-selective kinase inhibitors to characterizing the domain structure of multidomain proteins. With the growing utilization of CIU as a tool for structural biology, significant challenges have emerged in data analysis and interpretation, specifically the normalization and comparison of CIU data sets. Here, we present CIUSuite, a suite of software modules designed for the rapid processing, analysis, comparison, and classification of CIU data. We demonstrate these tools as part of a series of workflows for applications in comparative structural biology, biotherapeutic analysis, and high throughput screening of kinase inhibitors. These examples illustrate both the potential for CIU in general protein analysis as well as a demonstration of best practices in the interpretation of CIU data.


Assuntos
Gases/química , Desdobramento de Proteína , Proteínas/análise , Proteínas/química , Software , Íons/análise , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...